92 Cansu Iraz Seyrek Şık
[9]
Hosseini S.M., Mohammadi M., Rosemann A., Schröder T., Lichten -
berg J., A morphological approach for kinetic façade design pro-
cess to improve visual and thermal comfort. Review, “Building
and Environment” 2019, Vol. 153, 186–204, doi: 10.1016/j.build-
env.2019.02.040.
[10] Andrews L., Rottle N., Deploying living walls as kinetic façades,
“Journal of Living Architecture” 2017, Vol. 4, No. 2, 17–31, doi:
10.46534/jliv.2017.04.02.017.
[11] Nowysz A., Urban vertical farm – introduction to the subject
and discussion of selected examples, “Acta Scientiarum Polono-
rum Architectura” 2021, Vol. 20, Iss. 4, 93–100, doi: 10.22630/
aspa.2021.20.4.38.
[12]
Sanchez M.M., Kinetic Green Wall System Applications on Reducing
Carbon Emissions in Hot-Arid Climates, MA thesis, University of Ari-
zona, 2017, http://hdl.handle.net/10150/626722 [accessed: 25.11.2023].
[13]
Globa A., Costin G. Tokede O., Wang R., Khoo C.K., Moloney J., Hy-
brid kinetic façade: fabrication and feasibility evaluation of full-
scale prototypes, “Architectural Engineering and Design Manage-
ment” 2021, Vol. 18, Iss. 6, 1–21, doi: 10.1080/17452007.2021.1941739.
[14] Zheng X., Dai T., Tang M., An experimental study of vertical
greenery systems for window shading for energy saving in sum-
mer, “Journal of Cleaner Production” 2020, Vol. 259, 120708, doi:
10.1016/j.jclepro.2020.120708.
[15] Seyrek Şık C.I., Woźniczka A., Widera B., A conceptual framework
forthedesignofenergy-ecientverticalgreenfaçades, “Energies”
2022, 15(21), 8069, doi: 10.3390/en15218069.
[16] Seyrek C.I., Widera B., Woźniczka A., Sustainability-related pa-
rameters and decision support tools for kinetic green façades,
“Sustainability” 2021, 13(18), 10313, doi: 10.3390/su131810313.
[17] Manso M., Castro-Gomes J., Green wall systems: a review of their
characteristics, “Renewable and Sustainable Energy Reviews”
2015, Vol. 41, 863–871, doi: 10.1016/j.rser.2014.07.203.
[18] Perini K., Ottelé M., Haas E., Raiteri R., Vertical greening systems,
a process tree for green façades and living walls, “Urban Ecosys-
tems” 2013, Vol. 16, 265–277, doi: 10.1007/s11252-012-0262-3.
[19] Yan F., Shen J., Zhang W., Ye L., Lin X., A review of the applica-
tionofgreenwallsintheacousticeld, “Building Acoustics” 2022,
Vol. 29, Iss. 2, 295–313, doi: 10.1177/1351010X221096789.
[20] Schinkel U., Becker N., Trapp M., Speck M., Assessing the Con-
tribution of Innovative Technologies to Sustainable Development
for Planning and Decision-Making Processes: A Set of Indicators
to Describe the Performance of Sustainable Urban Infrastructures
(ISI), “Sustainability” 2022, 14(4), 1966, doi: 10.3390/su14041966.
[21]
Meng X., Yan L., Liu F., A new method to improve indoor environment:
Combining the living wall with air-conditioning, “Building and Envi-
ronment” 2022, Vol. 216, 108981, doi: 10.1016/j.buildenv.2022.108981.
[22]
Davis M.J.M., Ramirez F., Pérez M.E., More than just a Green Façade:
Vertical Gardens as Active Air Conditioning Units, “Procedia Engineer-
ing” 2016, Vol. 145, 1250–1257, doi: 10.1016/j.proeng.2016.04.161.
[23] Li X., Zhou J., Tang Y. et al., A hydroponic vertical greening system
for disposal and utilization of pre-treated Blackwater: Optimiza-
tion of the operating conditions, “Ecological Engineering” 2022,
Vol. 183, 106739, doi: 10.1016/j.ecoleng.2022.106739.
[24]
Irga P.J., Torpy F.R., Grin D., Wilkinson S.J., Vertical Greening
Systems: A Perspective on Existing Technologies and New Design
Recommendation, “Sustainability” 2023, 15(7), 6014, doi: 10.3390/
su15076014.
[25] Cortês A., Tadeu A., Santos M.I., de Brito J., Almeida J., Innova-
tive module of expanded cork agglomerate for green vertical sys-
tems, “Building and Environment” 2021, Vol. 188, 107461, doi:
10.1016/j.buildenv.2020.107461.
[26] Riley B., de Larrard F., Malécot V., Dubois-Brugger I., Lequay
H., Lecomte G., Living concrete: Democratizing living walls,
“ Science of The Total Environment” 2019, Vol. 673, 281–295, doi:
10.1016/j.scitotenv.2019.04.065.
[27] Bae J.Y., Park D., Weeping Brick: The Modular Living Wall System
Using 3D Printed Porous Ceramic Materials, [in:] J.H. Lee (ed.),
Computer-Aided Architectural Design, “Hello, Culture”, Daejeon
2019, Republic of Korea, June 26–28, 2019, Selected Papers, Spring-
er, Singapore 2019, 399–409, doi: 10.1007/978-981-13-8410-3_28.
[28] Perez Urrestarazu L., Egea G., Franco-Salas A., Fernandez-Cane-
ro R., Irrigation Systems Evaluation for Living Walls, “Journal of
Irrigation and Drainage Engineering” 2014, 140(4), 04013024-1/11,
doi: 10.1061/(ASCE)IR.1943-4774.0000702.
[29] Riley B., The state of the art of living walls: Lessons learned,
“Building and Environment” 2017, Vol. 114, 219–232, doi: 10.1016/
j.buildenv.2016.12.016.
[30] Xie L., Shu X., Kotze D.J., Kuoppamäki K., Timonen S., Lehvä-
virta S., Plant growth-promoting microbes improve stormwater
retention of a newly-built vertical greenery system, “Journal of En-
vironmental Management” 2022, Vol. 323, 116274, doi: 10.1016/
j.jenvman.2022.116274.
[31] Alsaad H., Hartmann M., Voelker C., The eect of a living wall
system designated for greywater treatment on the hygrothermal
performance of the façade, “Energy and Buildings” 2022, Vol. 255,
111711, doi: 10.1016/j.enbuild.2021.111711.
[32] Charoenkit S., Yiemwattana S., The performance of outdoor plants
in living walls under hot and humid conditions, “Landscape and
Ecological Engineering” 2021, Vol. 17, 55–73, doi: 10.1007/
s11355-020-00433-8.
[33] Bustami R.A., Beecham S., Hopeward J., The inuence of plant
type, substrate and irrigation regime on living wall performance in
a semi-arid climate, “Environments” 2023, 10(2), 26, doi: 10.3390/
environments10020026.
[34] Decker M., Zarzycki A., Designing resilient buildings with emergent
materials, [in:] E.M. Thompson (ed.), Fusion – Proceedings of the
32
nd
International Conference on Education and research in Com-
puter aided Architectural Design in Europe, Newcastle upon Tyne,
England, UK, 10-12 September 2014, Vol. 2, Northumbria Univer-
sity, Newcastle 2014, 179–184, doi: 10.13140/2.1.1060.8967.
[35] Capeluto G., Ochoa C., Intelligent envelopes for high perfor-
mance buildings: Design and strategy, Springer, Cham 2017, doi:
10.1007/978-3-319-39255-4.
[36] Fox M., Interactive Architecture: Adaptive World, Princeton Archi-
tectural Press, New York 2016.
[37] Grobman J., Yekutiel T., Autonomous movement of kinetic clad-
ding components in building façades, [in:] A. Chakrabarti, R. Pra -
kash (eds.), ICoRD’13. Lecture Notes in Mechanical Engineering,
Springer, Chennai 2013, doi: 10.1007/978-81-322-1050-4_84.
[38]
Aelenei L., Aelenei D., Romano R., Mazzucchelli E.S., Brzezicki M.,
Rico-Martinez J.M., Case Studies: Adaptive Façade Network, TU
Delft Open 2018.
[39] Tabasi S.F., Banihashemi S., Design and mechanism of building re-
sponsive skins: State-of-the-art and systematic analysis, “Frontiers
of Architectural Research” 2022, Vol. 11, Iss. 6, 1151–1176, doi:
10.1016/j.foar.2022.05.006.
[40] Lienhard J., Schleicher S., Poppinga S. et al., Flecton:ahingeless
appingmechanism inspiredbynature, “Bioinspiration and Bio-
mimetics” 2011, Vol. 6, No. 4, 045001, doi: 10.1088/1748-3182/6/
4/045001.
[41]
Gonzalez E.A., Moser S., Körner A. et al., Advancing solar control and
energy harvesting through the use of pneumatically actuated elastic
adaptivefaҫades, [in:] D.A. Saravanos, A. Benjeddou, N. Chrysochoi-
dis, T. Theodosiou (eds.), X ECCOMAS
Thematic Con ference on Smart
Structures and Materials SMART 2023, 3–5 July 2023,
Patras, Greece,
Eccomas Proceedia, 744–756, doi: 10.7712/150123.9828.444680.
[42]
Nagy Z., Svetozarevic B., Jayathissa P. et al., The adaptive solar fa-
çade: From concept to prototypes, “Frontiers of Architectural Re-
search” 2016, Vol. 5, Iss. 2, 143–156, doi: 10.1016/j.foar.2016.03.002
[43]
Correa D., Krieg O.D., Menges A., Reichert S., Rinderspacher K.,
HygroSkin: A climate-responsive prototype project based on the elas-
tic and hygroscopic properties of wood, [in:] ACADIA 2013 Adap-
tive Architecture: Proceedings of the 33
rd
Annual Conference of the
Association for Computer Aided Design in Architecture, October
21–27, 2013, Cambridge, Ontario, 33–42, doi: 10.52842/conf.aca-
dia.2013.02.
[44] Bedon C., Hon D., Machalická K.V. et al., Structural character-
isation of adaptive façades in Europe – Part II: Validity of con-
ventional experimental testing methods and key issues, “Journal
of Building Engineering” 2019, Vol. 25, 100797, doi: 10.1016/
j.jobe.2019.100797.
[45] Holstov A., Farmer G., Bridgens B., Sustainable materialisation
of responsive architecture, “Sustainability” 2017, 9(3), 435, doi:
10.3390/su9030435.