158  Izabela Wilczyńska, Paweł Bronisław Dąbek, Bartłomiej Ćmielewski, Jacek Kościuk
   [7]   Avilés  S.,  LaconservacióndelaRocaSagradadeSamaipata, [in:] 
A. Meyers, I. Combès (comp.), El Fuerte de Samaipata. Estu dios ar-
queológicos, Biblioteca del Museo de Historia, Universidad Autó-
noma Gabriel René Moreno, Santa Cruz de la Sierra 2015, 161–170.
   [8]   Spreaco M.C., Franci F., Bitelli  G. et al., Remote sensing tech-
niques in a multidisciplinary approach for the preservation of cul-
tural heritage sites from natural hazard: The case of Valmarecchia 
Rock Slabs (RN, Italy), “Engineering Geology for Society and 
Territory” 2015, Vol. 8, 317–321, doi: 10.1007/978-3-319-09408- 
3_5.
   [9]   Cigna F., Lasaponara R., Masini N., Milillo P., Tapete D., Persistent 
scatterer interferometry processing of COSMO-SkyMed StripMap 
HIMAGE time series to depict deformation of the historic centre of 
Rome, Italy, “Remote Sensing” 2014, Vol. 6, Iss. 12, 12593–12618, 
doi: 10.3390/rs61212593.
[10]   Casana J., Kantner J., Wiewel A., Cothren J., Archaeological aerial 
thermography: a case study at the Chaco-era Blue J community, 
NewMexico, “Journal of Archaeological Science” 2014, Vol. 45, 
207–219, doi: 10.1016/j.jas.2014.02.015.
[11]  Agapiou A., Alexakis D.D., Sarris A., Hadjimitsis, D.G., Evalu-
ating the potentials of sentinel-2 for archaeological perspective, 
“Remote Sensing” 2014, Vol. 6, Iss. 3, 2176–2194, doi: 10.3390/
rs6032176.
[12]   Chase F.A., Chase Z.D., Weishampel F.J. et al., Airborne LiDAR, 
archaeology, and the ancient Maya landscape at Caracol, Belize, 
“Journal of Archaeological Science” 2011, Vol. 38, Iss. 2, 387–398, 
doi: 10.1016/j.jas.2010.09.018.
[13]   Sarris A., Papadopoulos N., Agapiou A. et al., Integration of geo-
physical surveys, ground hyperspectral measurements, aerial and 
satellite imagery for archaeological prospection of prehistoric 
sites:thecase study of Vésztő-Mágor Tell, Hungary, “Journal of 
Archaeological Science” 2013, Vol. 40, Iss. 3, 1454–1470, doi: 
10.1016/j.jas.2012.11.001.
[14]  Aqdus S.A., Drummond J., Hanson W.S., Discovering archaeo-
logical cropmarks: A hyperspectral approach, “The Internation-
al Archives  of  the  Photogrammetry, Remote Sensing and Spatial 
Information Sciences” 2008, Vol. 37, 361–365, https://www.isprs.
org/proceedings/XXXVII/congress/5_pdf/64.pdf.
[15]   Cavalli  R.M.,  Colosi  F.,  Palombo A.,  Pignatti  S.,  Poscolieri  M., 
Remote hyperspectral imagery as a support to archaeological 
prospection, “Journal of Cultural Heritage” 2007, Vol. 8, Iss. 3, 
272–283, doi: 10.1016/j.culher.2007.03.003.
[16]   Dell’Unto N., Leander A.M., Dellepiane M. et al., Digital recon-
structionandvisualizationinarchaeology:Case-studydrawnfrom
the work of the Swedish Pompeii Project, “IEEE Xplore” 2013, 
621–628, doi: 10.1109/DigitalHeritage.2013.6743804.
[17]   De Reu J., Plets G., Verhoeven G. et al., Towardsathree-dimen-
sional cost eective registration of the archaeological heritage, 
“Journal of Archaeological Science” 2013, Vol. 40, Iss. 2, 1108–
1121, doi: 10.1016/j.jas.2012.08.040.
[18]   Dell’Unto N., Landeschi G., Leander Touati A.M. et al., Experienc-
ingAncient Buildings from a 3DGISPerspective: ACase Drawn
fromtheSwedishPompeiiProject, “Journal of Archaeological Meth-
od and Theory” 2016, 23, 73–94, doi: 10.1007/s10816-014-9226-7.
[19]   Landeschi G., Dell’Unto N., Lundqvist K. et al., 3D-GIS as a Plat- 
form for Visual Analysis: Investigating a Pompeian House, “Journal 
of Archaeological Science” 2016, Vol. 65, 103–113, doi: 10.1016/ 
j.jas.2015.11.002.
[20]   Larsson L., Trinks I., Söderberg B. et al., Interdisciplinary archae-
ologicalprospection,excavationand3Ddocumentationexempli-
edthroughtheinvestigationofaburialattheIronAgesettlement
site of Uppåkra in Sweden,  “Archaeological  Prospection”  2015, 
Vol. 22, Iss. 3, 143–156, doi: 10.1002/arp.1504.
[21]   Gupta N., Devillers R., Geographic Visualization in Archaeology, 
“Journal of Archaeological Method and Theory” 2017, Vol. 24, 
852–885, doi: 10.1007/s10816-016-9298-7.
[22]   Woodrow K., Lindsay J.B., Berg A.A., Evaluating DEM condition-
ingtechniques,elevationsourcedataandgridresolutionforeld-
scalehydrologicalparameterextraction, “Journal of Hydrology” 
2016, Vol. 540, 1022–1029, doi: 10.1016/j.jhydrol.2016.07.018.
[23]   Dąbrowska J., Dąbek P.B., Lejcuś I., A GIS based approach for the 
mitigationofsurfacerunotoashallowlowlandreservoir, “Eco-
hydrology and Hydrobiology” 2018, Vol. 18, Iss. 4, 420–430, doi: 
10.1016/j.ecohyd.2018.07.002.
[24]  Arc Hydro: GIS for Water Resources, D.R. Maidment (eds.), Envi-
ronmental Systems Research Institute, U.S., 2002.
[25]   Brubaker K.M., Myers W.L., Drohan P.J., Miller D.A., Boyer E.W., 
The use of LiDAR terrain data in characterizing surface roughness 
and microtopography, “Applied and Environmental Soil Science” 
2013, 1–13, doi: 10.1155/2013/891534.
[26]   Thomas I.A., Jordan P., Mellander P.E. et al., Improving the iden-
ticationofhydrologicallysensitiveareasusingLiDARDEMsfor
the delineation and mitigation of critical source areas of diuse
pollution, “Science of The Total Environment” 2016, Vol. 556, 
276–290, doi: 10.1016/j.scitotenv.2016.02.183.
[27]   Tarboton D.G., Bras R.L., Rodriguez-Iturbe I., OntheExtractionof
ChannelNetworksfromDigitalElevationData, “Hydrological Pro-
cesses” 1991, Vol. 5, Iss. 1, 81–100, doi: 10.1002/hyp.3360050107.
[28]  Jenson S.K., Domingue, J.O., Extracting Topographic Structure
from Digital Elevation Data for Geographic Information System 
Analysis,  “Photogrammetric  Engineering  and  Remote  Sensing” 
1988, Vol. 54, No. 11, 1593–1600.
Abstract
The geographic information system (GIS) has become a very popular and useful tool to aggregate and process spatial data. In this paper, the im-
plementation of data obtained during survey seasons at the El Fuerte de Samaipata (Bolivia) archaeological site and results of data analysis on the 
GIS platform are presented. In addition to the thematic layers, a description of the sectors and archaeological relics was added to the whole system. 
The implemented layers are related to orthoimages created from terrestrial laser scanning (TLS) and from close range photogrammetry (in visual, 
spectral, and infrared light), raw photos of petroglyphs, a highly detailed vector plan of the site, conservation risk maps, new spatial divisions, descrip-
tion layers, and a digital terrain model (DTM) based on the results of TLS. Such a system, with an implemented DTM, allows rainwater runo and 
its impact on the archaeological site to be analysed. Thus, the paper presents a study on some hydrological conditions of the Samaipata rock. It is part 
of the larger research project “Architectural examination and complex documentation of Samaipata (El Fuerte de Samaipata/Bolivia) site from the 
World Heritage List”. The results of this study are considered mainly from the point of view of conservation recommendations and strategies. Same 
aspects, however, may inuence future studies on the chronology and cultural aliation of the Samaipata rock carvings.
Key words: GIS, spatial analysis, data integration, conservation, hydrology
Acknowledgements /Podziękowania
Thepresentedworkisapartoftheresearchsponsoredbythegrantgiv-
entotheWrocławUniversityofScienceandTechnologybythePolish
National Science Centre (grant No. 2014/15/B/HS2/01108). Additio-
nally,themunicipalityofSamaipata,representedbyMayorFalvioLó-
pes Escalera, contributed to this research by providing the accommo-
dationduringthe eldwork in Juneand July 2016, aswellas in July 
 
2017. The Ministry of Culture and Tourism of Bolivia kindly granted 
all necessary permits (UDAM No. 014/2016; UDAM No. 060/2017).
The research was conducted in close cooperation with the Centrefor 
Pre-Columbian Studies of the University of Warsaw in Cusco. Spe-
cialists from many other universities and research centres also joined  
the project.